

9/1/2024

Fluid Measurement

Q2024103

AVA ESPIKOO SANAT

Technology Wins Dreams

DIFFERENTIAL PRESSURE FLOW **MEASUREMENT**

AVA ESPIKOO SANAT

Technology Wins Dreams

A TURNKEY SOLUTION

1/22

Office: Unit 8, Ground Floor, No120 (Bahar Building), South Bahar St, Tehran, Iran Tel: +98-(021)88340018 Email: info@AVAESPIKOO.com Web:WWW.AVAESPIKOO.com

Office: Unit 8, Ground Floor, No120 (Bahar Building), South Bahar St, Tehran, Iran Tel: +98-(021)88340018 Email: info@AVAESPIKOO.com Web:WWW.AVAESPIKOO.com

1/22

Flow measuring elements supplied

Flow measuring elements

orifice plate

venturi

nozzle

PRIMARY ELEMENT **SELECTION GUIDE**

Primary elements allow to cover a very wide range of applications. The below table will help you select the most suitable solution for your installation.

✓ recommended✓ adapted		G	GAS		I	OTEANA		
		CLEAN	DIRTY	CLEAN	DIRTY	VISCOUS	AGRESSIVE	STEAM
	CONCENTRIC ⁽¹⁾	~		~			 (2) 	(2)
	CONICAL ENTRANCE ⁽¹⁾	\checkmark				~	(2)	× ⁽²⁾
PLATE	QUARTER CIRCLE ⁽¹⁾	\checkmark	\checkmark	\checkmark	\checkmark	~	(2)	× ⁽²⁾
ORIFICE	ECCENTRIC ⁽¹⁾		~		~		 (2) 	(2)
	SEGMENTAL ⁽¹⁾		~		~		 (2) 	 (2)
	SHORT CONDITIONING ⁽¹⁾ STRAIGHT LENGTH	~//		~//			(2)	(2)
	SHORT VENTURI TUBE STRAIGHT LENGTH	~	\checkmark	~	\checkmark		\checkmark	\checkmark
	NOZZLE	~//	\checkmark	~	\checkmark	\checkmark	V ⁽²⁾	(2)
	VENTURI-NOZZLE	~	\checkmark		\checkmark	\checkmark	~	~
	METER RUN ⁽³⁾	~		~	\checkmark	\checkmark	\checkmark	~
	PITOT TUBE	~		~		\checkmark		
	SHORT CONE METER STRAIGHT LENGTH	~//	\checkmark	~	\checkmark		\checkmark	\checkmark
	WEDGE METER		"			~	~	\checkmark

⁽¹⁾ All of these primary elements can be integrated in a compact flowmeter version.

⁽²⁾ For a very corrosive / abrasive fluid, provide a resistant material

(3) The meter run is a complete solution including the primary element, gaskets, flanges, pressure taps, upstream and downstream straight lengths.

Special meter run

- Integrated orifice for diameters up to 40 mm

- High precision measurement tube with differential pressure transmitter and temperature sensor if needed for the most accurate measure of the market

3/22

Office: Unit 8, Ground Floor, No120 (Bahar Building), South Bahar St, Tehran, Iran Tel: +98-(021)88340018 Email: info@AVAESPIKOO.com Web:WWW.AVAESPIKOO.com

AVA ESPIKOO SANAT

Technology Wins Dreams

REYNOLDS NUMBER Ren

 V_1 fluid velocity in m/s

The Reynolds number (Re_n) is a dimensionless parameter which expresses the relationship between the inertia and viscosity forces in a pipe. It qualifies the type of flow (laminar, transient or turbulent).

The below table provides the Reynolds number limitations and the recommended pipe diameter as per the standards. It is possible to extend these values by performing a calibration of the device concerned.

		STAND	ARDIZEC - I	D VALI	UES / - Rey al diai	ACCOR nolds n meter of	DINC umbe f the	G ISO er Re _c pipe D	5167 &), in mr	n ISO/T	R 1
			ξ	5 000				2	5 ≤ D ≤ 1	000	
	80		25 ≤	: D ≤ 50	00			6.10⁴			
		250		25 ≤ I	D ≤ 50	0		6.10 ⁴			
						42 000	100) ≤ D ≤	1 000	8.4.10 ^₅	
					104	50 :	≤D≤	500		10 ⁶	
			Ę	5 000				2	5 ≤ D ≤ 1	000	
								2.10 ^₅	50 ≤ D	≤ 1 200	2.
					104			50 ≤ I	0≤630		
							1.5.1	105	65 ≤ D :	≤ 500	2.
	80					6	6 ≤ D :	≤ 300			
				1	1.2.104				100 ≤	D ≤ 5 00	0
						8.1	04		50 ≤ [0 ≤ 500	
					104			50 ≤ [0 ≤ 600	:	
1	0	10 ²	103		10		1	∩5	1	06	

⁽⁴⁾ Standardized element according to DIN VDI/VDE 2014

 $^{(5)}$ Non standardized element, recommended $\mathrm{Re}_{_{\mathrm{D}}}$ and D ranges

⁽⁶⁾ From 6 to 40 mm, standardized element according to ASME MFC-14M

⁽⁷⁾ Standardized element according to ASME MFC-12M

TECHNICAL CHARACTERISTICS		ISO/TR 15377	ISO 5167-1&2	ASME MFC-3M	
Re _D	Reynolds number in the pipe	$5\ 000 \le \text{Re}_{\text{D}} \le 10^{8}$			
D	Inside pipe diameter	$25 \text{ mm} \le D < 50 \text{ mm}$ $50 \text{ mm} \le D \le 1000 \text{ mm}$		≤ 1 000 mm	
d	Orifice diameter	d ≥ 12.5 mm			
ß	d/D	$0.5 \le \beta \le 0.7 \qquad \qquad 0.1 \le \beta \le 0.75$		≤ 0.75	
Ra	Upstream face roughness	Ra<10 ⁻⁴ .d			
r	Sharp edge radius	r < 0.000 4.d			
е	Orifice thickness	0.005.D ≤ e ≤ 0.02.D			
E	Plate thickness	e ≤ E ≤ 0.05.D			
α	Angle of the downstream bevel	$\alpha = 45^{\circ} \pm 15^{\circ}$			
+	Elatness tolerance	t < 0.005 (D - d)/2			

5/22

Office: Unit 8, Ground Floor, No120 (Bahar Building), South Bahar St, Tehran, Iran Tel: +98-(021)88340018 Email: info@AVAESPIKOO.com Web:WWW.AVAESPIKOO.com

TECHNICAL CHARACTERISTICS Reynolds number in the pipe Re_ D Inside pipe diameter d Orifice diameter d/D ß Ra Upstream face roughness Thickness of the conical entrance e Cylindrical part thickness е Е Plate thickness Angle of the upstream beve α Flatness tolerance

ISO/TR 15377	
$80 \le \text{Re}_{D} \le 6.10^{4}$	
25 mm ≤ D ≤ 500 mm	
d > 6 mm	
$0.1 \le \beta \le 0.316$	
Ra≤10 ⁻⁴ .d	
$e_1 = 0.084.d \pm 0.003.d$	
$e = 0.021.d \pm 0.003.d$	
E≤0.1.D	
$\alpha = 45^{\circ} \pm 1^{\circ}$	
$t < 0.005 (D - d - 2 e_1)/2$	

QUARTER CIRCLE ORIFICE PLATE

Recommended for viscous fluids

GENERAL DATA

- Standard: ISO/TR 15377 - Flange mounting : o ISO PN 2.5 to PN 420
- o ASME 150# to 2500# o Others: upon request
- o Ot - Material:

ΔΡ

0/0

- o Standard: stainless steel 304L / 316L
 - o Others : according to your datasheet
- Fluid: liquid, gas, steam
- Pipes from φ 25 to 500 mm
- Accuracy: 2 % of the max flow rate

TECHNICAL CHARACTERISTICS		ISO/TR 15377
Re _D	Reynolds number in the pipe	250 ≤ Re _D ≤ 6.10 ⁴
D	Inside pipe diameter	25 mm ≤ D ≤ 500 mm
d	Orifice diameter	d ≥ 15 mm
ß	d/D	$0.245 \le \beta \le 0.6$
Ra	Upstream face roughness	Ra≤10 ⁻⁴ .d
r	Quarter circle radius	0.100.d ≤ r ≤ 0.207.d
е	Quarter circle orifice thickness	2.5 mm ≤ e ≤ 0.1.D
E	Plate thickness	E≥r
α	Angle of the downstream bevel if needed	$\alpha = 45^{\circ}$
t	Flatness tolerance	Contact us

. • ⊕ •

10 78 2015 2" 3000 15 95d = 31.27 33 314L 140310-0/1

Office: Unit 8, Ground Floor, No120 (Bahar Building), South Bahar St, Tehran, Iran Tel: +98-(021)88340018 Email: info@AVAESPIKOO.com Web:WWW.AVAESPIKOO.com

AVA ESPIKOO SANAT

Technology Wins Dreams

ECCENTRIC ORIFICE PLATE

Recommended for dirty fluids with small particles or two-phase fluids

HARACTE	RISTICS	

Re _D	Reynolds number in the pipe				
D	Inside pipe diameter				
d	Orifice diameter				
ß	d/D				
Ra	Upstream face roughness				
r	Radius of the upstream sharp edge				
е	Cylindrical orifice thickness				
E	Plate thickness				
α	Angle of the downstream bevel if needed				
t	Flatness tolerance				

g

FLUID

 \Box

ISO/TR 15377
42 000 ≤ Re _D ≤ 8.4.10 ⁵
100 mm ≤ D ≤ 1 000 mm
d ≥ 50 mm
$0.46 \le \beta \le 0.84$
Ra ≤ 10 ⁻⁴ .d
r < 0.000 4.d
0.005.D ≤ e ≤ 0.02.D
e ≤ E ≤ 0.05.D
$\alpha = 45^{\circ} \pm 15^{\circ}$
t < 0.005.(D - d)/2

SEGMENTAL ORIFICE PLATE

Recommended for dirty fluids with small particles or two-phase fluids

GENERAL DATA

TECHNICAL CHARACTERISTICS		DIN VDI/VDE 2041
Re _D	Reynolds number in the pipe	$10^4 \le \text{Re}_{\text{D}} \le 10^6$
D	Inside pipe diameter	50 mm ≤ D ≤ 500 mm
h	Orifice height	h ≥ 12.5 mm
ß	h/D	0.316 ≤ ß ≤ 0.707
Ra	Upstream face roughness	Ra≤10 ⁴ .h
е	Orifice thickness	0.005.D ≤ e ≤ 0.02.D
E	Plate thickness	e ≤ E ≤ 0.05.D
α	Angle of the downstream bevel if needed	$\alpha = 45^{\circ} \pm 15^{\circ}$
t	Flatness tolerance	t < 0.005.(D - h)/2

9/22

Office: Unit 8, Ground Floor, No120 (Bahar Building), South Bahar St, Tehran, Iran Tel: +98-(021)88340018 Email: info@AVAESPIKOO.com Web:WWW.AVAESPIKOO.com

AVA ESPIKOO SANAT

Technology Wins Dreams

CONDITIONING ORIFICE PLATE

Cost-saving solution thanks to reduced upstream and downstream straight lengths

GENERAL DATA

- Accuracy: 0.5 % of the max flow rate
- Repeatability of measurement: 0.1 %

ΔP 0/0	ΔP 25/25	ΔP D-D/2	pressure taps	
		F		
			[_] t-	
		F		
		F		

TECHNICAL CHARACTERISTICS

Re _D	Reynolds number in the pipe	
D	Inside pipe diameter	
d	Orifice diameter	
ß	d/D	
Ra	Upstream face roughness	
r	Shard edge radius	
е	Sharp edge orifice thickness	
E	Plate thickness	
α	Angle of the downstream bevel if needed	
t	Flatness tolerance	

Office: Unit 8, Ground Floor, No120 (Bahar Building), South Bahar St, Tehran, Iran Tel: +98-(021)88340018 Email: info@AVAESPIKOO.com Web:WWW.AVAESPIKOO.com

2

Technology Wins Dreams

ROLLED WELDED VENTURI TUBE

Suitable for large diameters and/or low permanent pressure drop

GENERAL DATA

- Standards: ISO 5167-1&4 or ASME MFC-3M
- Weld-end (BW) or flanged connection
- Material:
 - o Standard: carbon steel, stainless steel o Others : according to your data sheet
- Fluid: liquid, gas, steam
- Pipes from φ 100 to 1 200 mm
- Accuracy: 1.5 % of the max flow rate
- Repeatability of measurement: 0.1 %

MARK	DESIGNATION
1	Entrance cylinder
2	Convergent
3	Throat
4	Divergent

AVA ESPIKOO SANAT

Technology Wins Dreams

MACHINED VENTURI TUBE

Suitable for small diameters and/or low permanent pressure drop

GENERAL DATA

- Standards: ISO 5167-1&4 or ASME MFC-3M
- Weld-end (BW) or flanged connection
- Material:
 - o Standard: carbon steel, stainless steel o Others : according to your data sheet
- Fluid: liquid, gas, steam
- Pipes from φ 50 to 250 mm
- Accuracy: 1 % of the max flow rate
- Repeatability of measurement: 0.1 %

Upstream and throat pressure taps: annular chambers or four tappings with a «triple-T» arrangement

Upstream and throat pressure taps: annular chambers or four tappings with a «triple-T» arrangement

TECHNIC	CAL CHARACTERISTICS	ISO 5167-1&4	ASME MFC-3M
Re _D	Reynolds number in the pipe	$2.10^5 \le \text{Re}_D \le 2.10^6$	$2.10^5 \le \text{Re}_{D} \le 6.10^6$
D	Inside pipe diameter	200 mm ≤ D ≤ 1 200 mm	100 mm ≤ D ≤ 1 200 mm
ß	d/D	$0.40 \le \beta \le 0.70$	$0.30 \le \beta \le 0.75$
-	Throat roughness	Ra≤10 ⁻⁴ .d	
Ra	Entrance cylinder and convergent roughness $R\alpha \le 5.10^{-4}$.D		
I	Entrance cylinder minimal length I = D		D
l'	Entrance convergent length	l' = 2.7	.(D - d)
α Entrance convergent angle		$\alpha = 21^{\circ} \pm 1^{\circ}$	
lc	Throat length	lc = d ± 0.03.d	
φ	Exit divergent angle	$7^\circ \le \varphi$	≤ 15°

Office: Unit 8, Ground Floor, No120 (Bahar Building), South Bahar St, Tehran, Iran Tel: +98-(021)88340018 Email: info@AVAESPIKOO.com Web:WWW.AVAESPIKOO.com

TEOLINIC				
TECHNICAL CHARACTERISTICS		ISO 5167-1&4	ASME MFC-3M	
Re _D	Reynolds number in the pipe	$2.10^5 \le \text{Re}_{D} \le 10^6$	$2.10^5 \le \text{Re}_D \le 6.10^6$	
D	Inside pipe diameter	50 mm ≤ D	≤ 250 mm	
ß	d/D	$0.40 \le \beta \le 0.75$	$0.30 \le \beta \le 0.75$	
Der	Throat roughness	Ra≤	i ≤ 10 ⁻⁴ .d	
RO	Entrance cylinder and convergent roughness $Ra \le 10^{-4}$.d		10 ⁻⁴ .d	
I	Entrance cylinder minimal length	=	= D	
'	Entrance convergent length	l' = 2.7	.(D - d)	
α	Entrance convergent angle	α = 21	° ± 1°	
lc	Throat length	lc = d ±	0.03.d	
φ	Exit divergent angle	$7^\circ \le \varphi$	≤ 15°	

Office: Unit 8, Ground Floor, No120 (Bahar Building), South Bahar St, Tehran, Iran Tel: +98-(021)88340018 Email: info@AVAESPIKOO.com Web:WWW.AVAESPIKOO.com

11/22

Technology Wins Dreams

AS CAST VENTURI TUBE

For a better accuracy

GENERAL DATA

- Standards: ISO 5167-1&4 or ASME MFC-3M
- Weld-end (BW) or flanged connection - Material:
 - o Standard: carbon steel, stainless steel
- o Others : according to your application Fluid: liquid, gas, steam
- Pipes from φ 100 to 1 200 mm
- Accuracy: 0.7 % of the max flow rate
- Repeatability of measurement: 0.1 %

Upstream and throat pressure taps: annular chambers or four tappings with a «triple-T» arrangement

TECHNIC	CAL CHARACTERISTICS	ISO 5167-1&4	ASME MFC-3M	
Re _D	Reynolds number in the pipe	$2.10^5 \le \text{Re}_{D} \le 2.10^6$	$2.10^5 \le \text{Re}_D \le 6.10^6$	
D	Inside pipe diameter	100 mm ≤ D ≤ 800 mm	100 mm ≤ D ≤ 1 200 mm	
ß	d/D	0.30 ≤ f	3 ≤ 0.75	
De	Throat roughness	Ra ≤ 10 ⁻⁴ .d		
RO	Entrance cylinder and convergent roughness	Ra≤	Ra≤10 ⁻⁴ .D	
I	Entrance cylinder minimal length	I = D ou (0.2	5.D + 250 mm)	
l'	Entrance convergent length	l' = 2.7	.(D - d)	
α	Entrance convergent angle	α = 21	° ± 1°	
lc	Throat length	$lc = d \pm 0.03.d$ (mir	nimum value = d/3)	
R ₁	Radius of curvature 1 between the entrance cylinder and the convergent section	R ₁ = 1.375.1	D ± 0.275.D	
R_2	Radius of curvature 2 between the convergent section and the throat	R ₂ = 3.625.	d ± 0.125.d	
R_3	Radius of curvature 3 between the throat and the divergent section	5.d < R	₃ < 15.d	
φ	Exit divergent angle	$7^\circ \le \varphi$	≤ 15°	

Office: Unit 8, Ground Floor, No120 (Bahar Building), South Bahar St, Tehran, Iran Tel: +98-(021)88340018 Email: info@AVAESPIKOO.com Web:WWW.AVAESPIKOO.com

AVA ESPIKOO SANAT

Technology Wins Dreams

ISA 1932 NOZZLE

Suitable for large flow rates with high speeds

GENERAL DATA

- Standards: ISO 5167-1&3 or ASME MFC-3M
 Flange mounting : o ISO PN 2.5 to 420
 - o ASME 150# to 2500#
 - o Others: upon request
 - or weld-end connection (BW)
- Material :
 - o Standard: carbon steel, stainless steel
- o Others : according to your data sheet
- Fluid: liquid, gas, steam
- Pipes from φ 50 to 500 mm
- Accuracy: 0.8 % of the max flow rate
- Repeatability of measurement: 0.1 %

TECHNICAL CHARACTERISTICS

Re _D	Reynolds number in the pipe	
D	Inside pipe diameter	
ß	d/D	
Ra	Roughness of the upstream face and throat	
b _n	Cylindrical throat length	
a	Nozzle total length	
r	Downstream sharp edge radius	
Н	Thickness	

ISO 5167-1&3 & ASME MFC-3M
$2.10^4 \le \text{Re}_{D} \le 10^7$
50 mm ≤ D ≤ 500 mm
$0.3 \le \beta \le 0.8$
Ra≤10 ⁻⁴ .d
b _n = 0.3.d
Upon request
r < 0.000 4.d
H ≤ 0.1.D

Technology Wins Dreams

INTEGRATED ORIFICE

Complete measuring element with special flanges Suitable for diameters of pipes \leq 40 mm

GENERAL DATA

- Standard: ASME MFC-14M
- Mounting of the sharp edge orifice plate between special flanges (direct mounting of the manifold and of the differential pressure transmitter)
- Weld-end (BW) or flanged connection
- Material:
 - o Standard: carbon steel, stainless steel o Others : according to your data sheet
- Fluid: liquid, gas, steam
- Pipes from φ 6 to 40 mm
- Accuracy: 0.5 % of the max flow rate
- Repeatability of measurement: 0.1 %

MARK	DESIGNATION
1	Flange
2	Upstream pipe
3	Bolts
4	Annular chamber
5	Gasket
6	Sharp edge orifice plate
7	Upstream pipe

The construction is carried out in compliance with the standards (primary element, roughness of upstream and downstream pipes, centering of the primary element, pipe circularity, upstream and downstream straight lengths...) in order to achieve optimum measurement accuracy.

ΔP

TECHNICAL CHARACTERISTICS

		ASME MFC-14M
Re _D Reynolds number in the pipe		Re _D > 1 000
D	Inside pipe diameter	6 mm ≤ D ≤ 40 mm
ß	β d/D $0.1 \le \beta \le 0.8$	
	Sha	rp edge orifice plate
Ra	Roughness of the upstream face	Ra < 1.27 μm
r	Sharp edge radius	r < 0.000 4.d or 0.025 μm
е	Orifice thickness	e < 0.02.D or 0.125.d
E	Plate thickness	E < 3.2 mm
α	Angle of the downstream bevel of the plate	$\alpha = 45^{\circ} \pm 15^{\circ}$

15/22

Office: Unit 8, Ground Floor, No120 (Bahar Building), South Bahar St, Tehran, Iran Tel: +98-(021)88340018 Email: info@AVAESPIKOO.com Web:WWW.AVAESPIKOO.com

5 Delloituid

σ

AVA ESPIKOO SANAT

Technology Wins Dreams

METER RUN

Complete and flexible measuring element to facilitate on-site installation

GENERAL DATA

- Standards: ISO 5167-1&2. ASME MFC-3M or ISO/TR 15377
- Mounting of the primary element between flanges :

o ISO PN 2.5 to 420

- o ASME 150# to 2500#
- o Others: upon request

- Weld-end (BW) or flanged connection

- Material:

o Standard: carbon steel, stainless steel o Others : according to your data sheet

- Fluid: liquid, gas, steam
- Pipes from φ 25 to 300 mm (for easy assembling)
- Accuracy: according to the primary element considered
- Repeatability of measurement: 0.1 %

ΔP	ΔP
0/0	25/25
pressure taps	

MARK	DESIGNATION
1	Flange
2	Upstream pipe
3	Bolts
4	Orifice flange*
5	Gasket
6	Orifice plate**
7	Upstream pipe

* mounting also possible between annular chamber ** all types of orifice plates (as well as nozzles) can be mounted in a meter run

Orifice plates	0.0
Nozzles	56

e corresponding technical datasheet Upstream and downstream straight lengths, pipe roughness and circularity, centering of the measuring element

ACCESSORIES

Manifold	~
Differential pressure transmitter	S

Office: Unit 8, Ground Floor, No120 (Bahar Building), South Bahar St, Tehran, Iran Tel: +98-(021)88340018 Email: info@AVAESPIKOO.com Web:WWW.AVAESPIKOO.com

The assembly is carried out in our workshop in compliance with standards (roughness of upstream and downstream pipes, centering of the primary element, pipe circularity, ustream and downstream straight lengths...) in order to reach optimum measurement accuracy.

see corresponding technical datasheet

PITOT TUBE

Suitable for flow measurement in large pipes,

Technology Wins Dreams

AVA ESPIKOO SANAT

Technology Wins Dreams

CONE METER

Suitable for short straight lengths and low flow rates

for installations with low pressure **GENERAL DATA GENERAL DATA** - Standard: ISO 5167-1&5 - Standard: ASME MFC-12M - Weld-end (BW) or flanged connection - Measurement averaged over the entire length of the tube - Material: - Mounting on the pipe: o Standard: carbon steel, stainless steel o compression fitting o Others : according to your data sheet o flange: ISO PN 2.5 to PN 420 or ASME 150# to 2500# - Fluid: liquid, gas, steam - Pipes from φ 50 to 500 mm o retractable - Accuracy: 5 % of the max flow rate - Material: - Repeatability of measurement: 0.1 % o Standard: stainless steel 304L / 316L o Others : according to your data sheet - Fluid: liquid, gas, steam MARK DESIGNATION - Pipes from ϕ 100 to 5 000 mm Cone 1 - Accuracy: contact us - Repeatability of measurement: 0.1 % 2 Tube MARK DESIGNATION Boss 1 2 Pitot tube 3 Pipe FLUID FLUID **TECHNICAL CHARACTERISTICS** Reynolds number in the pipe Re D Inside pipe diameter **TECHNICAL CHARACTERISTICS** ASME MEC-12M dc, diameter of the cone at the point ß* where its circumference is maximum

	Re _D	Reynolds number in the pipe	Re _D > 1.2.10 ⁴
	D	Inside pipe diameter	100 mm ≤ D ≤ 5 000 mm
	L1	Upstream straight length	L1 ≥ 7.D
	L2	Downstream straight length	L2 ≥ 3.D
	Р	Maximum allowable pressure	P ≤ 600 bar
	Т	Maximum allowable temperature	T ≤ 1 300 °C
	μ	Maximum fluid viscosity	0.2 Pa.s

17/22

Office: Unit 8, Ground Floor, No120 (Bahar Building), South Bahar St, Tehran, Iran Tel: +98-(021)88340018 Email: info@AVAESPIKOO.com Web:WWW.AVAESPIKOO.com

Cone surface roughness Bending radius of the cone at its

maximum circumference Distance between upstream and

downstream pressure tap

Ra

R,

L

 $*\beta = \sqrt{1 - \frac{d_c^2}{D^2}}$

18/22

 $R_1 < 0.000 \ 5.d_2 \ ou < 0.2 \ mm$

 $50 \text{ mm} \le L \le 2.D$

Technology Wins Dreams

SIMPLE ORIFICE **RESTRICTION ORIFICE**

Cost-saving solution

GENERAL DATA

- Design based on ISO 5167, ASME MFC-3M or R.W. Miller standards - Flange mounting o ISO PN 2.5 to PN 420 o ASME 150# to 2500# o Others: upon request - Material: o Standard: stainless steel 304L / 316L o Others : according to your data sheet - Fluid: liquid, gas, steam - For all pipe sizes

AVA ESPIKOO SANAT

Technology Wins Dreams

MULTI HOLE RESTRICTION ORIFICE

Suitable to reduce noise when passing through the orifice

GENERAL DATA

٠٠ 1910-000 1940-1 1940-1 1940-1 1940-1 1940-1 0 0 FLUID

TECHNICAL DESCRIPTION

Orifice diameter	Sized according to the fluid, to the desired pressure drop and flow rate when passing through the restriction.
Plate thickness	Calculation based on the pressure drop created by the plate and the piping inside diameter to prevent plate deformation during operation.
Noise	Noise level control estimated at 1 m. In the event of a high noise level, refer to the multi- hole plate.
Cavitation	The level of cavitation is checked for each plate. In the presence of cavitation, a multistage alternative can be proposed depending on the operating conditions of the restriction.
Critical flow or Choked flow	If the fluid reaches its maximum speed when passing through the restriction, its flow rate can no longer increase. A multi-stage solution can be proposed depending on the operating conditions of the restriction.

19/22

Office: Unit 8, Ground Floor, No120 (Bahar Building), South Bahar St, Tehran, Iran Tel: +98-(021)88340018 Email: info@AVAESPIKOO.com Web:WWW.AVAESPIKOO.com

TECHNICAL DESCRIPTION

Orifices	Sized according to the fluid, pressu
Plate thickness	Calculation based on the pressure diameter to prevent plate deformation
Noise	The number of orifices is determine The maximum noise level depends the regulatory framework for average Intermittent or emergency operation regulations). If the noise level is still too high, it is
Cavitation	The level of cavitation is checked for avoid cavitation.
Critical flow ou Choked flow	Orifices are calculated at critical flow

Office: Unit 8, Ground Floor, No120 (Bahar Building), South Bahar St, Tehran, Iran Tel: +98-(021)88340018 Email: info@AVAESPIKOO.com Web:WWW.AVAESPIKOO.com

re drop and flow rate passing through the restriction.

drop created by the plate and the piping inside on during operation.

d according to the noise level not to be exceeded. on the operating conditions: limited to 85 dB(A) by ge daily exposure in continuous operation. n - higher values acceptable (see corresponding

possible to switch to a multi-stage restriction orifice. or each plate and the orifices are calculated in order to

w limit to generate a maximum pressure drop.

CAVITATION

CRITICAL FLOW

RESTRICTION ORIFICES

components due to the energy dissipation.

CAVITATION - CRITICAL FLOW - NOISE

fluid remains in gaseous form. This is the phenomenon of flashing.

Technology Wins Dreams

AVA ESPIKOO SANAT

Technology Wins Dreams

MULTI-STAGE RESTRICTION ORIFICE

Multiple plates in series when the desired pressure drop cannot be achieved with a single plate

TECHNICAL DESCRIPTION

Plate mounting	Plates mounted in series – spacing device (D, inside pipe diameter)
Number of plates	Calculation of the number of stage application, each plate enabling to the phenomena of cavitation and of
Noise	Control of the noise level of the correduce the noise level per stage. External enclosure solutions can b
Thermodynamics	Thermodynamic properties of the f stage: phase change, temperature compressibility factor
3D simulation	Possibility of a numerical simulatio

Office: Unit 8, Ground Floor, No120 (Bahar Building), South Bahar St, Tehran, Iran Tel: +98-(021)88340018 Email: info@AVAESPIKOO.com Web:WWW.AVAESPIKOO.com

Liquid cavitation occurs when low local pressure (lower than the vaporization pressure) is sufficient to allow the fluid to change phase from liquid to vapor (gas bubbles appearing).

This phenomena can happen when the pressure is droping as the fluid is passing through

the orifice. If downstream pressure is recovering above the phase change pressure, the

implosion of these gas bubbles can generate significant noise levels and damage metallic

If the pressure remains below the vaporization pressure downstream of the restriction, the

When approaching the restriction, the fluid velocity is increasing until it reaches its maximum speed as it flows through the restriction. If the sonic speed is reached (choked flow) or if the cavitation is too important (choking cavitation), the flow passing through this

21/22

To avoid the two phenomena mentioned above or **to reduce the noise level of the device**, a multi-stage restriction orifice can be proposed. To optimize the design and validate analytical calculations of complex applications, our engineering office is able to perform fluid flow simulations (CFD).

Fluid velocity

with simple orifice plates

Example: design validation of a restriction orifice after comparing velocities as fluid is passing through the restrictions

Office: Unit 8, Ground Floor, No120 (Bahar Building), South Bahar St, Tehran, Iran Tel: +98-(021)88340018 Email: info@AVAESPIKOO.com Web:WWW.AVAESPIKOO.com

22/22

g between plates from 1D to 5D optimized for each

s optimized according to the specifications of the reduce the pressure to the maximum while avoiding critical flow

mplete device estimated at 1 m. Multi-hole plates

e added if the noise level remains too high (contact us) iluid are taken into account for the calculation of each e, composition and density of the mixture, viscosity,

n to complete the analytical calculations .